a) Bencze, G., Bencze, S., Rivera, K.D. et al. Mito-oncology agent: fermented extract suppresses the Warburg effect, restores oxidative mitochondrial activity, and inhibits in vivo tumor growth. Sci Rep 10, 14174 (2020).
Abstract: Mitochondrial dysfunction and significant changes in metabolic pathways accompany cancer development and are responsible for maintaining the tumor microenvironment. Normal mitochondria can trigger intrinsic apoptosis by releasing cytochrome c into the cytosol. The survival of malignant cells highly depends on the suppression of this function. We validated that A250, a highly purified fraction of fermented wheat germ extract (FWGE), increases the carbon flux into the mitochondria, the expression of key elements of the Krebs cycle and oxidative phosphorylation (OXPHOS). The increased respiratory chain activity is related to the mitochondria’s ability to release cytochrome c into the cytosol, which triggers the apoptotic cascade. The 68% tumor growth inhibitory effect observed in the murine melanoma study is related to this effect, as proteomic analysis validated similar changes in mitochondrial protein levels in the isolated tumor tissue samples. Blood count data indicated that this effect was not accompanied by general toxicity. This study is significant, as it shows that a highly concentrated form of FWGE is an effective agent that increases normal mitochondrial functionality. The lack of hepatotoxic and general toxic effects makes A250 an excellent candidate targeting mitochondria function in cancer therapy.
b) Newell L, Tuscano J, o’Donnell R, Ma Y, Purified, Fermented, Extract of Triticum Aestivum Has Significant Independent Lymphomacidal Activity and Augments the Activity of Rituximab, Blood (ASH Annual Meeting Abstracts), Nov 2010; 116: 2857
Background: Non-Hodgkin’s lymphoma (NHL) affects over 400,000 people in the United States and its incidence increases with age. Treatment options include cytotoxic chemotherapy, which is often poorly tolerated by elderly patients, and monoclonal antibody (mAb) therapy. Nearly 70% of NHL patients eventually die of the disease. Development of effective alternate treatments with favorable toxicity profiles is necessary. Fermented wheat germ extract (FWGE) has shown anticancer potential in laboratory animals as well as in some small clinical studies; it is produced under GMP conditions in Europe and sold as AvemarTM. The mechanism of action of FWGE is unclear, but is thought to involve metabolic pathways involved in tumor cell death. We examined the effects of FWGE on NHL and found significant lymphomacidal activity using in vitro and in vivo assays. We then further purified and characterized the active components of FWGE in order to develop a more potent form and to understand the mechanism of action, physiologic, and immunologic properties.
Methods: FWGE was produced by fermenting purified wheat germ (Triticum aestivum) with Baker’s yeast. The FWGE was further purified by removing insoluble material, precipitating proteins, freeze drying, fractionating with Sepharose and Sephadex columns, and then dialyzing to remove small molecules. The resultant fermented wheat germ proteins (FWGP) were assessed for in vitro cytotoxicity and pro-apoptotic activity using a panel of NHL cell lines. In vivo lymphomacidal activity was assessed in nude mice bearing Raji lymphoma xenografts. Mice were treated with increasing daily doses of FWGE by gastric lavage and compared to untreated controls as well as the commercially available fermented wheat germ product, Avemar.
Results: In vitro killing assays with FWGE (regardless of the source) demonstrated lymphomacidal properties in three NHL cell lines (Jurkat, Raji, and Ramos). Pre-treatment of FWGE with heat or proteinase K reduced the lymphomacidal activity, suggesting that the active component was a protein. Nude mice bearing Raji lymphoma xenografts treated with FWGE confirmed the lymphomacidal properties of FGWE; there was no detectable toxicity as assessed by observation, mouse weight, or blood counts. The purified low molecular weight proteins (FWGP) also demonstrated lymphomacidal properties by cytotoxicity assays and murine NHL models, but at 1/1000th of the original dose. When FWGP was combined with rituximab, there was enhanced in vitro lymphomacidal activity, with over a 4000-fold reduction in the IC50. FWGP-induced NHL cell death was mediated by caspase-3-dependent apoptosis. FWGP augmented the host immune effector mechanisms, including ADCC and CDC, along with potent activation of NK-T cells (CD3/69/16), CD4+ T-cells and monocytes.
Conclusions: FWGE can be easily produced and has cytotoxic effects in in vitro assays and in vivo. The purified FWGP are quantifiable, and are 10–1000 times more potent than FWGE. The mechanism of FWGP activity is based on direct pro-apoptotic effects as well as augmentation of host immune mediators. FWGP has activity against various subtypes of NHL. Studies are ongoing to further characterize the immune effects and anti-cancer properties of FWGP, as is planning for a human clinical trial +/– rituximab in patients with NHL.
Purified-Fermented-Extract-of-Triticum (pdf)
Downloadc) Iyer A, Brown L. Fermented Wheat Germ Extract (Avemar) in the Treatment of Cardiac Remodeling and Metabolic Symptoms in Rats, Evid Based Complement Alternat Med. 2009 Jul 21.
Avemar, a product of industrial fermentation of wheat germ with a standardized content of benzoquinone and plant flavonoids, has been tested as an anti-cancer and immunomodulatory dietary supplement. Proposed mechanisms include anti-oxidant and anti-inflammatory actions. This study has determined whether these actions of Avemar may also be useful in the treatment of cardiovascular diseases. Two experimental rat models of cardiovascular remodeling were used in this project: the deoxycorticosterone acetate (DOCA)-salt-induced model of chronic hypertension (study I) and a high-carbohydrate/high-fat diet-induced model producing chronic symptoms of the metabolic syndrome and its associated cardiovascular complications (study II). Our results in these rat models of hypertension and diet-induced obesity show that treatment with Avemar improved cardiac function, decreased macrophage infiltration resulting in decreased collagen deposition in the ventricular myocardium, reversed an increased stiffness of the left ventricle in the diseased hearts and attenuated increased plasma malondialdehyde concentrations. In addition to the changes in the heart, Avemar reversed glucose intolerance, normalized systolic blood pressure and decreased visceral fat deposition in rats fed a high-fat/high-carbohydrate diet. In conclusion, the fermented wheat germ extract Avemar has a potential role in attenuating chronic hypertension, diabetes or metabolic syndrome-induced cardiovascular symptoms along with metabolic abnormalities such as glucose tolerance and obesity.
FWGEin_the_Treatment (pdf)
Downloadd) Tejeda, M., Gaal, D., Szucs, I.., Telkes, A., Avemar Inhibits the Growth of Mouse and Human Xenograft Mammary Carcinomas Comparable To Endocrine Treatments, Journal of Clinical Oncology, 2007 ASCO Annual Meeting Proceedings, Part 1, Vol. 25, No. 18S, (June 20 Supplement), 2007: 21132.
Background: An in vitro study demonstrated that Avemar increased the effect of Tamoxifen on MCF7 (ER+) mammary carcinoma cells. Methods: MXT (ER+) mouse mammary tumor tissue was transplanted s.c. into BDF1 mice. The tumor bearing animals were treated p.o. with Avemar. Then the most effective Avemar dose (3.0 g/kg), Tamoxifen (0.5 mg/kg s.c.), Examestane (10 mg/kg i.p.) and Anastrasol (5 mg/kg i.p.) monotherapies and their combinations with Avemar was compared. All treatments were given once daily, for 10 days, starting 7 days after the tumor transplantation. The same experimental schedule was repeated using T47/D (ER+) human breast carcinoma cell lines transplanted into C.B-17/Icr-scid/scid mouse. Finally, the growth of T47/D and MDA-MB-231 (ER-) xenografts treated by Avemar was compared. Tumor volume was measured up to 25 days after transplantation in MXT and 55 days in xenograft. Results: In MXT model all monotherapies and combinations led to retardation of tumor growth. Combination of Avemar with any of the endocrine treatment enhanced the efficacy compared to endocrine monotherapy. Out of the four monotherapies the best result was achieved by Avemar (50% inhibition). The combination of Avemar with Examestane increased the tumor growth inhibition to 60.4% compared to control. The other treatments did not exceed the effect of Avemar monotherapy. In xenograft model Avemar produced 50% tumor growth inhibition compared to control and was more effective than the other treatments Examestane (26%), Anastrasol (25%) or Tamoxifen (42%). Combined treatment with Avemar always improved efficacy within the range of 3-10%. Avemar showed similar efficacy when T47/D (49%) and MDA-MB-231 (52%) xenografts were compared. Conclusions: The tumor growth inhibitory effect of Avemar on ER positive MXT mouse breast carcinoma as well as in T47/D xenograft models are comparable (equal or better) to standard endocrine treatments. Avemar certainly did not reduce the effect.
3A-AvemarInhibitstheGrowth (pdf)
Downloade) Telekes A, Resetar A, Balint G, Blazso G, Falkay G, Lapis K, Raso E, Szende B, Ehrenfeld M, Shoenfeld Y, Hidvegi M., Fermented wheat germ extract (avemar) inhibits adjuvant arthritis, Ann N Y Acad Sci. 2007 Sep;1110:348-61.
Anti-inflammatory efficacy of the fermented wheat germ extract (FWGE, Avemar) in the rat adjuvant arthritis (AA) model was examined. To Wistar rats with AA, different doses of FWGE and anti-inflammatory drugs (indomethacin, dexamethasone) as monotherapies were administered and FWGE and either diclofenac or dexamethasone were also given in combination. Besides plethysmographies of the paws, histological investigations of synovial tissues were also performed along with detection of CD4+ and CD8+ T lymphocytes. Gene expressions of COX-1 and 2 were determined by real-time polymerase chain reaction (PCR). FWGE monotherapy significantly inhibited the development of the secondary (immune-mediated) response in AA, and dexamethasone and indomethacin exerted inhibitory effects in a degree comparable to that of FWGE. Histological analysis of the affected joints confirmed the results. FWGE inhibited COX-1 and -2, while indomethacin enhanced COX-2 gene expressions. FWGE had an additive interaction with diclofenac. It is concluded that FWGE has significant anti-inflammatory efficacy confirmed by plethysmography, histology, and real-time PCR.
3B-FWGEInhibitsAdjuvantArthritis (pdf)
Downloadf) Marcsek Z, Kocsis Z, Jakab M, Szende B, Tompa A., The efficacy of tamoxifen in estrogen receptor-positive breast cancer cells is enhanced by a medical nutriment, Cancer Biother Radiopharm. 2004 Dec;19(6):746-53.
Avemar, a fermented wheat germ extract, has been applied in the supplementary therapy of human cancers. Because tamoxifen is commonly used in the therapy of ER+ breast cancer, in this study the combined effect of tamoxifen and Avemar treatment was investigated on MCF-7 breast cancer cells, in order to detect a possible agonistic or antagonistic action. Cytotoxicity was measured by MTT assay, the percentage of mitoses and apoptotic cells was determined morphologically, apoptosis and S-phase was measured by flow cytometry, and estrogen-receptor activity was determined by semiquantitative measurement of the estrogen-responsive pS2 gene mRNA production. Tamoxifen (1 nM) alone had no effect on the percentage of the apoptotic cell fraction and significantly reduced the percentage of the S-phase, compared to untreated cells. Avemar (625 microg/mL) significantly increased apoptosis after 48 hours of treatment. Tamoxifen together with Avemar significantly increased apoptosis already 24 hours after starting treatment but had only a slight (not significant) effect on mitosis and S-phase. Estrogen-receptor activity of MCF-7 cells was enhanced by Avemar, decreased by tamoxifen, and was further decreased by combined tamoxifen and Avemar treatment. As apoptosis increased when Avemar was added to tamoxifen treatment, the use of supplementary therapy with Avemar in the case of ER+ breast tumors may enhance the therapeutic effects of tamoxifen.
3C-EfficacyofTamoxifeninReceptor (pdf)
Downloadg) Stipkovits L, Lapis K, Hidvégi M, Kósa E, Glávits R, Resetár A., Testing the efficacy of fermented wheat germ extract against Mycoplasma gallisepticum infection of chickens,Poult Sci. 2004 Nov;83(11):1844-8.
The effect of fermented wheat germ extract (FWGE, Immunovet-HBM) was studied in chickens challenged with Mycoplasma gallisepticum. Ninety M. gallisepticum- and M. synoviae-free 3-wk-old chickens were exposed to aerosol infection of M. gallisepticum. One group (30 birds) was treated with FWGE, a second group with tiamulin, and a third group was untreated. The fourth group was exposed to PBS aerosol as a negative control. On d 9, all chickens were slaughtered and examined for the presence of gross and histological lesions, the presence of the challenge strain in the organs and specific antibodies in the serum. Body weight gains and feed conversion rates were recorded. In the groups treated with FWGE and with tiamulin, the chickens remained clinically healthy: their BW gains were 441.7 g and 446.8 g, respectively. Feed conversion ratios were 1.72 and 1.71 for FWGE- and tiamulin-treated birds, respectively. Control birds had BW gain of 480.8 g, and feed conversion ratio of 1.78. The numbers of birds with gross lesions (15 and 11, respectively) and lesion scores (25 and 25, respectively) of the FWGE- and tiamulin-treated groups were significantly lower than in the infected untreated group (25 birds, lesion score of 190). No mycoplasma was reisolated from brain, liver, spleen, heart, or kidneys of the FWGE-treated birds, and the number of mycoplasma isolations from the respiratory tract samples was less frequent (10) than from the infected untreated group (64). In addition, 35 samples from other internal organs were also positive. Twenty percent of the birds treated with FWGE showed serological response with a 5.0% reaction score, whereas in the infected untreated group, 83.3% of birds were reactors, with a 62.5% reaction score.
3D-Study (pdf)
Downloadh) Szende B, Marcsek Z, Kocsis Z, Tompa A., Effect of simultaneous administration of Avemar and cytostatic drugs on viability of cell cultures, growth of experimental tumors, and survival tumor-bearing mice, Cancer Biother Radiopharm. 2004 Jun;19(3):343-9.
Avemar (Biromedicina Co., Budapest, Hungary), a wheat germ preparation with immunomodulant and antimetastatic activity, was applied simultaneously with cytostatic drugs of different modes of action, in vitro and in vivo, in order to find out whether this simultaneous administration exerts an antagonistic or a synergistic effect on the viability of cell cultures, tumor growth, and survival of animals, inoculated with a transplantable mouse tumor (3LL-HH). In vitro, Avemar did not influence the effect on the viability of MCF-7, HepG2, or Vero cells, exerted by Dacarbazine, 5-fluorouracyl, or Adriblastina. In vivo, Avemar, combined with Endoxan, Navelbine, and doxorubicin, did not prevent the tumor growth inhibitory effect of the cytostatic drugs. The combination of Avemar with the cytostatic drugs did not increase the toxicity of the cytostatic compounds, and did not exert any toxic effect. Avemar may be administered together with cytostatic drugs, without the risk of increasing toxicity or decreasing antiproliferative activity.
3E-EffectStudy (pdf)
Downloadi) Ehrenfeld M, Blank M, Shoenfeld Y, Hidvegi M., AVEMAR (a new benzoquinone-containing natural product) administration interferes with the Th2 response in experimental SLE and promotes amelioration of the disease, Lupus. 2001;10(9):622-7.
The potential of oral treatment with AVEMAR (AVEMAR), a new benzoquinone-containing fermentation product of wheat germ, on features of experimental systemic lupus erythematosus (SLE) in naive mice, induced by idiotypic manipulation, was studied. We assessed the effect of AVEMAR on the profile of autoantibody production and the response of Th1/Th2 related cytokines as well as the clinical picture of experimental SLE in the SLE-induced mice. When the product was given in the pre-immunization period, down-regulation of autoantibody production (anti-dsDNA, mouse 16/6 Id, and anti-histones) following treatment with AVEMAR was noted (eg anti-dsDNA decreased from 0.898+/-0.097 OD at 405 nm to 0.519+/-0.103 OD following treatment). This effect was sustained for at least 4 weeks after discontinuation of the therapy. Serological manifestations associated with a delay in Th2 response (IL-4 and IL-10) were recorded (eg IL-4 decreased from 91.7+/-8.11 to 59.55+/-7.78 ng/ml in splenocyte condition media). The mice showed normal ESR, WBC and less than 100 mg/dl of protein in the urine in comparison to > 300 mg/dl protein in the SLE non-treated mice. In conclusion, oral intake of AVEMAR can ameliorate the clinical manifestations of experimental SLE, via affecting the Th1/Th2 network inhibiting Th2 response.
3F-AVEMAR (pdf)
Downloadj) Zalatnai A, Lapis K, Szende B, Rásó E, Telekes A, Resetár A , Hidvégi M., Wheat germ extract inhibits experimental colon carcinogenesis in F-344 rats, Carcinogenesis. 2001 Oct;22(10):1649-52.
It has been demonstrated for the first time that a wheat germ extract prevents colonic cancer in laboratory animals. Four-week-old inbred male F-344 rats were used in the study. Colon carcinogenesis has been induced by azoxymethane (AOM). Ten rats served as untreated controls (group 1). For the treatment of the animals in group 2, AOM was dissolved in physiologic saline and the animals were given three subcutaneous injections 1 week apart, 15 mg/kg body weight (b/w) each. In two additional groups Avemar (MSC), a fermented wheat germ extract standardized to 2,6-dimethoxy-p-benzoquinone was administered as a tentative chemo-preventive agent. MSC was dissolved in water and was given by gavage at a dose of 3 g/kg b/w once a day. In group 3, animals started to receive MSC 2 weeks prior to the first injection of AOM daily and continuously thereafter until they were killed 32 weeks later. In group 4 the basal diet and MSC were administered only. At the end of the experiment all the rats were killed by exsanguination, the abdominal large vessels were cut under a light ether anesthesia and a complete autopsy was performed. Percentage of animals developing colon tumors and number of tumors per animals: group 1 - 0 and 0; group 2- 83.0 and 2.3; group 3 - 44.8 (P < 0.001) and 1.3 (P < 0.004), group 4 - 0 and 0. All the tumors were of neoplastic nature also histologically. The numbers of the aberrant crypt foci (ACF) per area (cm(2)) in group 2 were 4.85 while in group 3 the ACF numbers were 2.03 only (P < 0.0001).
3G-WheatGermExtract (pdf)
Downloadk) Hidvégi M, Rásó E, Tömösközi-Farkas R, Szende B, Paku S, Prónai L, Bocsi J, Lapis K., MSC, a new benzoquinone-containing natural product with antimetastatic effect, Cancer Biother Radiopharm. 1999 Aug;14(4):277-89.
An orally applicable fermentation product of wheat germ containing 0.04% substituted benzoquinone (MSC) has been invented by Hungarian chemists under the trade name of AVEMAR. Oral administration (3 g/kg body weight) of MSC enhances blastic transformation of splenic lymphocytes in mice. The same treatment shortens the survival time of skin grafts in a co-isogenic mouse skin transplantation model, pointing to the immune-reconstructive effect of MSC. A highly significant antimetastatic effect of MSC has been observed in three metastasis models (3LL-HH, B16, HCR-25). The antimetastatic effect of MSC--besides the immune-reconstitution--may also be due to its cell adhesion inhibitory, cell proliferation inhibitory, apoptosis enhancing, and antioxidant characteristics, also observed in our in vitro experiments. It is even more noteworthy that combined treatment with MSC and one of the following antineoplastic agents (5-FU and DTIC)--both in wide use in every day clinical practice--exhibited a significantly enhanced antimetastatic effect in appropriate metastasis models (established from C38 mouse colon carcinoma and B16 mouse melanoma respectively) as compared to the effect elicited by any component of these therapeutic compositions (MSC + 5-FU and MSC + DTIC) administered alone. The results show that the fermented wheat germ extract (MSC) has more than an additive effect and synergistically enhanced the metastasis inhibitory effect of both antineoplastic agents studied till now. It is also worthy of mention that the synchronous treatment with MSC profoundly decreased the toxic side effects of the applied antineoplastic agents (decreased weight loss etc). Based on the biological effects of MSC--shown to be non-toxic by subacute toxicology studies--this product may be used as an adjuvant in the therapy of malignant neoplasia and other diseases caused by or following immune-deficiency.
3H-MSC (pdf)
Downloadl) Hidvégi M, Rásó E, Tömösközi Farkas R, Lapis K, Szende B., Effect of MSC on the immune response of mice, Immunopharmacology. 1999 Apr;41(3):183-6.
The supposed immunostimulatory actions of MSC, a new fermented wheat germ extract standardized to its benzoquinone composition (trade name: AVEMAR) were studied examining blastic transformation of peripheral blood lymphocytes of mice treated with MSC. It was found that MSC significantly increased the degree of blastic transformation caused by Concanavalin A. Using the B10LP to C57Bl skin graft system, MSC (0.03 and 3.0 g kg(-1) applied orally) acted in favour of restoring the immune function. On the other hand, 2,6-dimethoxy-p-benzoquinone (DMBQ), applied in equivalent doses (0.012 and 1.2 mg kg(-l)), did not shorten the rejection time of skin grafts. The immune restoring effect, as well as the blastic transformation enhancing potential of MSC may be exploited in various cases of decreased immune response.
3I-EffectofMSContheImmuneResponseofMice (pdf)
Downloadm) Szende B, Rásó E, Hidvégi M, Tömösköziné FR, Paku S, Prónai L, Bocsi J, Lapis K., A new benzoquinone-containing antimetastatic product, Orv Hetil. 1998 Nov
An orally applicable fermentation product of wheat germ containing 0.04% substituted benzoquinone (MSC) was invented by Hungarian chemists under the trade--name of AVEMAR. The following biological effects of this product were observed. Oral administration (3 g/kg body weight) of MSC enhances blastic transformation of splenic lymphocytes of mice. The same treatment shortens the survival time of skin grafts in co-isogenic mouse skin transplantation model, which points to immune-reconstructive effect of MSC. Highly significant anti-metastatic effect of MSC was observed in three metastasis models (3LL-HH, B16, HCR-25). The antimetastatic activity of MSC--besides the immune reconstitution--may also due to the cell-adhesion inhibitory, cell proliferation inhibitory, apoptosis-enhancing and antioxidant effects, which were also observed in our in vitro experiments. Based on the biological effects of MSC--which is non-toxic, according to subacute toxicology studies--this product may be used as an adjuvant in the therapy of malignant neoplasia and other diseases caused by or following immunedeprivation.
Files coming soon.
n) Hidvégi M, Ráso E, Tömösközi-Farkas R, Paku S, Lapis K, Szende B., Effect of Avemar and Avemar + vitamin C on tumor growth and metastasis in experimental animals,Anticancer Res. 1998 Jul-Aug;18(4A):2353-8.
Because of the observed immunostimulatory actions of a new fermented wheat germ extract--with standardized benzoquinone composition--we have investigated the eventual tumor growth- and metastasis-inhibiting effects of this preparation (Avemar) applied alone or in combination with vitamin C. Tumor models of different origin [a highly metastatic variant of the Lewis lung carcinoma (3LL-HH), B16 melanoma, a rat nephroblastoma (RWT-M) and a human colon carcinoma xenograft (HCR25)]--kept in artificially immunosuppressed mice were applied. The metastasis-inhibiting effects of the treatments have been studied both in the presence and in the absence (following surgical removal) of the transplanted primary tumors. Combined treatments with Avemar and vitamin C—administered synchronously--profoundly inhibited the metastasis formation in all the applied tumor models while, treatments with vitamin C alone did not exert such an inhibiting effect on the metastasizing process. The degree of the observed metastasis inhibition in certain models was significant, while in others--although it was meaningful--did not prove to be significant. It is noteworthy that treatment with Avemar alone in certain models exerted a more pronounced inhibiting effect on metastasis formation than the synchronous combined treatment with Avemar and vitamin C. Furthermore, if the time schedule of the combined treatment was changed (vitamin C--instead of being administered synchronously--was given one hour after the treatments with Avemar), the vitamin C rather decreased the metastasis inhibiting effect of Avemar. It should be mentioned however, that in the case of rat nephroblastoma, a different response was observed: while, in the case of synchronous combination significant inhibition of metastasis formation was observed, treatment with Avemar alone did not produce metastasis-inhibition. It is noteworthy that in this model the metastasis-inhibiting effect of the synchronous combination treatment proved to be even more pronounced if Avemar was administered in a 100 times smaller dose than its regularly applied dosage. Treatment with Avemar and vitamin C--administered in combination or separately--in the majority of experimental models (with the exception of rat nephroblastoma) did not inhibit the growth of the primary tumors. It is reasonable, therefore, to suppose that in the observed metastasis-inhibiting effect the eventual proliferation inhibiting effect of these remedies does not play an important role. According to the results of other experiments--carried out in our laboratory in parallel with those described here--Avemar proved to have a meaningful immunostimulatory effect. It might therefore be suggested that the observed metastasis-inhibiting effect of this preparation may be mainly due to its immunostimulatory properties. The possible therapeutic benefits of Avemar and Avemar plus vitamin C are also discussed.
3K-EffectofAvemar (pdf)
Downloada) Wang CW, Wang CK, Chang YJ, Choong CY, Lin CS, Tai CJ, Tai CJ, Preclinical evaluation on the tumor suppression efficiency and combination drug effects of fermented wheat germ extract in human ovarian carcinoma cells, Evid Based Complement Alternat Med. 2015;2015:570785.
Abstract
Fermented wheat germ extract (FWGE) is a nutrient supplement and a potential antitumor ingredient for developing an integrated chemotherapy with standard chemotherapeutic drugs for treating ovarian cancer patients. In this study, we evaluated the tumor suppression efficiency of FWGE in human ovarian carcinoma cells, SKOV-3 and ES-2, and found the half-maximal inhibitory concentrations (IC50s) to be 643.76 μg/mL and 246.11 μg/mL after 48 h of FWGE treatment. FWGE treatment also induced programmed cell death by activating the caspase-7 cleavage in both SKOV-3 and ES-2 cells, but only caspase-3 and poly(adenosine diphosphate-ribose) polymerase cleavages were activated in SKOV-3 cells. Moreover, FWGE exhibited combination drug effects with cisplatin and docetaxel in SKOV-3 and ES-2 cells by enhancing the cytotoxicity of both drugs. In conclusion, we found that FWGE not only suppressed cell growth but also induced caspase-3-related and caspase-7-related cell death in human ovarian carcinoma cells. FWGE treatment further enhanced the cytotoxicity of cisplatin and docetaxel, suggesting that FWGE is a potential ingredient in the development of adjuvant chemotherapy with cisplatin or docetaxel for treating ovarian cancer patients.
Link to full text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359848/
b) Shibuya N, Inoue K, Tanaka G, Akimoto K, Kubota K, Augmented pentose phosphate pathway plays critical roles in colorectal carcinomas, Oncology. 2015;88(5):309-19.
Abstract
Glycolysis and the pentose phosphate pathway (PPP) are preferentially activated in cancer cells. Accumulating evidence indicated the significance of the altered glucose metabolism in cancer, but the implication for oncotherapy remains unclear. Here we report that the synthesis of glycolytic and PPP enzymes is almost ubiquitously augmented in colorectal carcinoma (CRC) specimens. The mammalian target of rapamycin (mTOR) inhibitor INK128 (300 nM) and phytochemical Avemar (1 mg/ml) inhibited the synthesis of PPP enzymes in CRC cell lines. INK128 (150-600 nM) and resveratrol (75-300 μM) inhibited aerobic glycolysis in the cell lines. INK128 (300 nM) and Avemar (1 mg/ml) decreased the NADPH/NADP(+) ratio as well as the GSH/GSSG ratio in the cell lines. Finally, per os administration of INK128 (0.8 mg/kg) or Avemar (1 g/kg) suppressed tumor growth and delayed tumor formation by transplantable CRC specimens derived from patients. Taken together, pharmacological inhibition of the mTOR-PPP axis is a promising therapeutic strategy against CRCs.
c) Tai CJ, Wang WC, Wang CK, Wu CH, Yang MD, Chang YJ, Jian JY, Tai CJ, Fermented wheat germ extract induced cell death and enhanced cytotoxicity of Cisplatin and 5-Fluorouracil on human hepatocellular carcinoma cells, Evid Based Complement Alternat Med. 2013;2013:121725.
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. Due to the difficulties of early diagnosis, curative treatments are not available for most patients. Palliative treatments such as chemotherapy are often associated with low response rate, strong adverse effects and limited clinical benefits for patients. The alternative approaches such as fermented wheat germ extract (FWGE) with anti-tumor efficacy may provide improvements in the clinical outcome of current therapy for HCC. This study aimed to clarify antitumor efficacy of FWGE and the combination drug effect of FWGE with chemotherapeutic agents, cisplatin and 5-fluorouracil (5-Fu) in human HCC cells, HepG2, Hep3B, and HepJ5. The present study indicated that FWGE exhibited potential to suppress HepG2, Hep3B, and HepJ5 cells, with the half maximal inhibitory concentrations (IC50) of FWGE were 0.494, 0.371 and 1.524 mg/mL, respectively. FWGE also induced Poly (Adenosine diphosphate ribose) polymerase (PARP) associated cell death in Hep3B cells. Moreover, the FWGE treatment further enhanced the cytotoxicity of cisplatin in all tested HCC cells, and cytotoxicity of 5-Fu in a synergistic manner in HepJ5 cells. Collectively, the results identified the anti-tumor efficacy of FWGE in HCC cells and suggested that FWGE can be used as a supplement to effectively improve the tumor suppression efficiency of cisplatin and 5-Fu in HCC cells.
Link to full text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3881523/
d) Judson PL, Al Sawah E, Marchion DC, Xiong Y, Bicaku E, Zgheib NB, Chon HS, Stickles XB, Hakam A, Wenham RM, Apte SM, Gonzalez-Bosquet J, Chen DT, Lancaster JM., Characterizing the efficacy of fermented wheat germ extract against ovarian cancer and defining the genomic basis of its activity, Int J Gynecol Cancer. 2012 Jul;22(6):960-7.
OBJECTIVE: Most women with advanced-stage epithelial ovarian cancer (OVCA) ultimately develop chemoresistant recurrent disease. Therefore, a great need to develop new, more active, and less toxic agents and/or to optimize the efficacy of existing agents exists.
METHODS: In this study, we investigated the activity of Avemar, a natural, nontoxic, fermented wheat germ extract (FWGE), against a range of OVCA cell lines, both alone and in combination with cisplatin chemotherapy and delineated the molecular signaling pathways that underlie FWGE activity at a genome-wide level. RESULTS: We found that FWGE exhibited significant antiproliferative effects against 12 human OVCA cell lines and potentiated cisplatin-induced apoptosis. Pearson correlation of FWGE sensitivity and gene expression data identified 2142 genes (false discovery rate < 0.2) representing 27 biologic pathways (P < 0.05) to be significantly associated with FWGE sensitivity. A parallel analysis of genomic data for 59 human cancer cell lines matched to chemosensitivity data for 2,6-dimethoxy-p-benzoquinone, a proposed active component of FWGE, identified representation of 13 pathways common to both FWGE and 2,6-dimethoxy-p-benzoquinone sensitivity.
CONCLUSIONS: Our findings confirm the value of FWGE as a natural product with anticancer properties that may also enhance the activity of existing therapeutic agents. Furthermore, our findings provide substantial insights into the molecular basis of FWGE's effect on human cancer cells.
RESEARCH HIGHLIGHTS: Fermented wheat germ extract has significant antiproliferative effects on OVCA cell lines and may enhance the effect of cisplatin-induced cell death.Genome-wide expression data reveal that FWGE sensitivity in ovarian cancer cells was associated with 2142 genes, representing 27 biologic pathways.
Efficacy-of-FWGE (pdf)
Downloade) Z. Bago-Horvath, B. Forstner, M. Kalipciyan, A. Bedeir, M. Gruscj, O.Komina, J. Wesierska-Gadek, T. Szekeres, M. Hidvegi, R. Mader, Favourable anti-cancer activity of fermented wheat germ freeze-dried extract (avemar lyophilisate) in triple-negative breast cancer cells, May 01, 2011 European Society for Medical Oncology, Annals of Oncology 22 (Supplement 2): ii54–ii57, 2011
Objective: The fermented wheat germ extract, which is the active ingredient of nutraceuticals widely used by cancer patients in Europe, Korea and the United States, possesses cytotoxic and anti-metastatic effects in various human malignancies. In estrogen responsive MCF-7 breast cancer cells, it has been shown to potentiate the induction of apoptosis by tamoxifen. However, its effects in triple-negative and Her2-overexpressing breast cancer cells and interactions with chemotherapy have not been investigated until now.
Methods: Cytotoxicity of Avemar lyophilisate alone and in combination with docetaxel was assessed by MTT and clonogenic assays in MCF-7 estrogen responsive, HCC-38 triple-negative and SKBR-3 Her2/neu overexpressing cells. Cell cycle phase distribution was determined by FACS. Apoptosisassociated activaton of caspase-3/7 was measured by Caspase-Glo Assay. Inhibition of tumor cell invasion was quantified using the ORIS Cell Invasion kit.
Results: Avemar lyophilisate exhibited highest cytotoxic activity against triple negative HCC-38 cells in MTT and clonogenic assays with IC50 values of 180 and 15 lg/ml, respectively, indicating likely clinical activity. In combination with docetaxel, additive and marginally synergistic effects were demonstrated in triple-negative HCC-38 and Her2/neu overexpressing SKBR-3 cells, whereas in the estrogen responsive MCF-7 cell line, cytotoxic activity of docetaxel was antagonized by Avemar lyophilisate. Perturbations in cell cycle phase distribution were differentially regulated by Avemar lyophilisate in estrogen receptor negative HCC-38, SKBR-3 and in estrogen receptor expressing MCF-7 cells, which was associated with altered activation of caspase-3/7. Invasive capacity of breast cancer cells was inhibited by Avemar lyophilisate in all three cancer cell lines investigated in a dose-independent manner.
Conclusions: Avemar lyophilisate exerts highest anti-cancer activity against triple negative HCC-38 human breast cancer cells. Due to its likely clinical activity against this human malignancy, further investigation of Avemar lyophilisate in triple-negative breast cancer is warranted.
FAVOURABLE-ANTI-CANCER (pdf)
Downloadf) Mueller T, Jordan K, Voigt W., Promising cytotoxic activity profile of fermented wheat germ extract (Avemar®) in human cancer cell lines, J Exp Clin Cancer Res. 2011 Apr 16;30:42.
Fermented wheat germ extract (FWGE) is currently used as nutrition supplement for cancer patients. Limited recent data suggest antiproliferative, antimetastatic and immunological effects which were at least in part exerted by two quinones, 2-methoxy benzoquinone and 2,6-dimethoxybenzquinone as ingredients of FWGE. These activity data prompted us to further evaluate the in vitro antiproliferative activity of FWGE alone or in combination with the commonly used cytotoxic drugs 5-FU, oxaliplatin or irinotecan in a broad spectrum of human tumor cell lines. We used the sulforhodamine B assay to determine dose response relationships and IC50-values were calculated using the Hill equation. Drug interaction of simultaneous and sequential drug exposure was estimated using the model of Drewinko and potential clinical activity was assessed by the model of relative antitumor activity (RAA). Apoptosis was detected by DNA gel electrophoresis.FWGE induced apoptosis and exerted significant antitumor activity in a broad spectrum of 32 human cancer cell lines. The highest activity was found in neuroblastoma cell lines with an average IC50 of 0.042 mg/ml. Furthermore, IC50-range was very narrow ranging from 0.3 mg/ml to 0.54 mg/ml in 8 colon cancer cell lines. At combination experiments in colon cancer cell lines when FWGE was simultaneously applied with either 5-FU, oxaliplatin or irinotecan we observed additive to synergistic drug interaction, particularly for 5-FU. At sequential drug exposure with 5-FU and FWGE the observed synergism was abolished.Taken together, FWGE exerts significant antitumor activity in our tumor model. Simultaneous drug exposure with FWGE and 5-FU, oxaliplatin or irinotecan yielded in additive to synergistic drug interaction. However, sequential drug exposure of 5-FU and FWGE in colon cancer cell lines appeared to be schedule-dependent (5-FU may precede FWGE).Further evaluation of FWGE as a candidate for clinical combination drug regimens appeared to be warranted.
Promising-cytotoxic-activity (pdf)
Downloadg) Saiko P, Ozsvar-Kozma M, Graser G, Lackner A, Grusch M, Madlener S, Krupitza G, Jaeger W, Hidvegi M, Agarwal RP, Fritzer-Szekeres M, Szekeres T., Avemar, a nontoxic fermented wheat germ extract, attenuates the growth of sensitive and 5-FdUrd/Ara-C cross-resistant H9 human lymphoma cells through induction of apoptosis, Oncology Reports, 2009 Mar;21(3):787-91.
Avemar (MSC) is a nontoxic fermented wheat germ extract, which has been shown to significantly improve the survival rate in patients suffering from various malignancies. We investigated its effects in sensitive and 5-FdUrd/Ara-C cross-resistant H9 human lymphoma cells. After 48 and 72 h of incubation, Avemar inhibited the growth of sensitive H9 cells with IC50 values of 290 and 200 microg/ml, whereas the growth of 5-FdUrd/Ara-C cross-resistant H9 cells was attenuated with IC50 values of 180 and 145 microg/ml, respectively. Treatment with 300 microg/ml MSC for 48 h caused dose-dependent induction of apoptosis in 48% of sensitive H9 cells. In cross-resistant H9 cells, incubation with 200 microg/ml Avemar for 48 h led to 41% of apoptotic tumor cells. Growth arrest of sensitive H9 cells after exposure to various concentrations of MSC occurred mainly in the S phase of the cell cycle, thereby increasing the cell population from 54 to 73% while depleting cells in the G0-G1 phase from 40 to 19%. Growth arrest in cross-resistant H9 cells occurred also mainly in the S phase, increasing the cell population from 45 to 68% while depleting cells in the G0-G1 phase from 45 to 31%. As MSC treatment likely overcomes 5-FdUrd/Ara-C resistance, further investigations to elucidate the exact mechanisms are warranted. We conclude that Avemar exerts a number of beneficial effects which could support conventional chemotherapy of human malignancies.
Avemar (pdf)
DownloadCopyright © 2021 FWGE Research - All Rights Reserved.
We use cookies to analyze website traffic and optimize your website experience. By accepting our use of cookies, your data will be aggregated with all other user data.